
 
Grouping in TAMS Analyzer 

 
Analysis in qualitative research ultimately requires some means of grouping codes 
together into other categories. These category schemes are complicated in that they may 
represent either a many-to-one relationship between codes and categories or many-to-
many relationships. TAMS Analyzer provides mechanisms for both. TAMS Analyzer  
provides five different mechanisms for creating categories, and each has its own 
advantages and disadvantages. These categorizing schemes can all be used singly or in 
combination.  
 

1. Adding a root code. If you are grouping codes into a single category scheme in 
which each code will only be in a single category you can add a root code 
representing the category in which the rest of the code belongs. For example 
given three codes aa, aa>bb, and cc; you might want to group aa>bb and cc into a 
group X and aa into a group Y. By adding a code at the root, so that these become 
X>aa>bb, X>cc and Y>aa.  This is done with Results->Recode->Add root code 
(and reversed with Results->Recode->Delete root codes). The advantage of this 
that you can use the full power of TAMS Analyzer’s ability to search for and 
select codes. This includes the data summary feature,  The other advantage is that 
once a code is attached to a root code, new passages will automatically be put into 
the category as you are coding (since the category is part of the code). 

 
The disadvantages of this approach are that codes cannot be put in more than one 
category or category system using this technique (though other techniques can be 
used as well). Furthermore, as in the example I gave, existing groups (e.g., aa in 
the example) may be broken up. This can somewhat be compensated for through 
the use of “>” in searches (looking for >aa will look for aa at all levels of the 
code) and regex selections. 

 
2. Adding another layer of codes. Consider two codes a>b and c which you want to 

put in category m. You could simply wrap each passage coded with a>b and c 
with a new code m. You would simply mark the instances you are interested in 
and use the “Results->Recode->Add code” menu item. You must make sure that 
you check for nested, however since there will very likely be some passages that 
are coded with both a>b and c and will thus have been put in category m two 
times.  The real advantage of this mechanism is that you can use data summaries 
and other reporting mechanisms that are set up for codes. For the subsequent 
methods I describe, you have to use data comparison to manually get measures of 
frequency. This is not too bad, but there are levels of  

 
On the other hand, consider what happens if, upon examination you decide to 
mark a few additional passages with a>b and c, after you have used the “Add 
code” command. These new passages will not be automatically coded with m. 
You have to somehow add them yourself to the category. While not onerous it is a 
conscious effort (I would suggest an unlimited search, selecting for a>b—and 



then c and then the other codes in the category; then removing from the selection 
any data with {m} in it; then, “add code” code m to what remains—everything 
but the last step could be automated with an auto set). Furthermore, it is one that 
you will have to do regularly, if you continue coding.  

 
3. Code sets. In the project window there exists a tab called tags and sets. Within 

this tab there are other tabs to further facilitate activities for labeling codes and 
files; one of these tabs is marked “Codes” which is for creating and managing 
code sets. With code sets you can create groups of codes that can be named and 
act as a single category.  These are very easy to assemble. Once assembled, you 
can look specifically for passages coded by that code set (load the code set and 
use the “Add current code set” workbench button to add the code set to the search 
criteria), and you can filter any results window by a code set (you can filter code 
sets in or out of the current selection). This gives a very handy way of viewing in 
a moment the data that falls in a particular code set category. You can also group 
codes by code sets to give you counts and produce “graphs” of the relation 
between your variables and code sets.  Furthermore, passages coded after the 
creation of the set will automatically be returned when you ask for the set, since it 
is keeping track of codes not coded passages of text, unlike category schemes 1 
and 2. 

 
While the summary statistics are not as complete as with other methods of 
creating categories—you can not use the data summary table, TA can produce 
counts using the data comparison tables, including counts cross tabulated with 
other variables. In the present version of TA this is probably your best, most 
flexible, most easy to use, scheme for creating categories of codes.  

 
4. Autosets. Automatic sets, aka macros, provide a very powerful way of gathering 

data together that matches particular criteria. Furthermore, these criteria can be 
more complex than particular codes, e.g., it could be data that contains a 
particular word, or passages with a certain code but not containing a particular 
word, or having this particular code but not that one. Auto sets can be created that 
are “local” to a particular search or that are project wide, and thus available to all 
searches. Finally, autosets themselves can be subject to complicated comparisons 
through the use of “Set operations” (On the Results->Result sets menu). Here 
overlaps, exclusive or’s and unions can be created.  

 
On the other hand, the data summary mechanism does not work with auto sets. 
The best that can be done is what I described in the second paragraph of “Code 
sets.”  

 
5. Named sets. Named sets offers a way to gather together specific results records 

rather than codes or some other larger category of data. These groups of records 
can be highly complicated, with connections only apparent to the analyst. 
Furthermore, these sets can be compared and studied using the Results->Result 
sets->Set operations dialogue. Finally, they are easy to create: once the data you 



have is showing, you simply name the visible data with Results->Result sets-
>Create named set menu item. 

 
On the other hand, named sets do not persist if the data is refreshed; they are not 
project wide; they do not automatically include new coded data; and they cannot 
be counted in data summaries. Their use, therefore, is important (given that they 
alone can group any data records) but limited. 

 
Category 
method 

Project 
Wide 

Self-
updating* 

Countable  Easy to use Advantages Disadvantages 

Category as 
root of codes 

Yes Yes Yes, in 
DST and 
DCT** 

Yes Easy to use, 
supported 
through recode 
additions in 
2.45. Once set 
up passages are 
categorized as 
coded. Can be 
analyzed with 
data summaries. 

A code can only 
be put in a single 
category with 
this scheme.  

Category as 
a layer of 
Codes 

Yes No Yes in 
DST and 
DCT 

Initially yes, 
subsequentl
y no 

Can be subject 
to analysis like 
any other code 

Difficult to apply 
subsequently to 
coded passages 
en masse. 
 
Can lead to 
nested code 
problems 

Code sets Yes Yes DCT only Yes Integrated 
across project; 
easy to use 

Can’t be counted 
in a summary. 
Criteria is 
defined only by 
the _code 
column. 

Auto sets Optional Yes No No Most flexible 
way of 
winnowing 
data: no limits 
on which 
columns or how 
data is 
compared 

Can be difficult 
to create and edit 
 
Can’t be counted 
in summary 
reports. 

Named sets No No No Yes Can represent 
very complex 
sets of data. 
Very easy to 
create 

Not persistent 
between 
refreshes, not 
project wide.  
Useful for quick 
investigations. 
 
Can’t be counted 
in DST or DCT 

 



*Self-updating in this context means that if you have a code a>b in a category m, then all 
new instances of passages coded a>b will also appear as category m. If a method of 
categorizing is not self-updating, you will need to manually add the new coded passage to 
category m. 
**DST = Data summary table; DCT = Data comparison table 


