
Published by mayday
Softworks; Tacoma, WA, USA

(cc) 2010, 2012 by
Matthew Weinstein,
Some rights reserved

This work is licensed under a
Creative Commons

Attribution-No Derivative
Works 3.0 License.

What is a
context code?*

This is a
context

code

This is a data
code

Verse describes
where the data

codes like
sound>pig are

located: they are
in verse 1 or

verse 2.

Context variables have a
value. The simplest way to
assign values is simply to
code them: surround the

value with tags containing
the context code.

Here the context
code "verse" is given

a value of "1"

In other words
verse describes the
"context" of the
data codes. That's
what makes it a
context code.

*I may sometimes
call it a context
variable. The terms
are synonymous

Part 1: What are
Context codes? Why
should I use them?

Note that the context
variables are set prior
to the data they describe:
verse comes before
sound>pig

Typical context
codes, context
codes that don't
workFor text projects

typical context
codes include page,
date, author, title,
pubDate, and
publisher.

For ethnographic
projects typical
context codes
include informant,
speaker, location,
time, date, datatype.

Context codes can describe an
entire document or one
portion of it. The value may
hold constant over a document
or change throughout it.

Remember that context codes have a
value. Male and Female are probably
not good context variables. Sex is a
probably a better one and it would be
assigned a value of Male or Female.

Why use
context codes?

the name of Context codes are
just like data codes and
cannot contain spaces: use
only letters, numbers and the
underscore character.

Context codes
appear as their
own columns
when you do a

simple or non-
simple search

Your data and its
associated data code...

...is matched
with the

values of the
context
codes

That means you always know
where and who and what is
connected with your data

E.g., when you see a quote at
the top of your results
window, you can see that it is
a quote from a woman named
Amy on 3/21/2007

Finally, once
context codes are

organized into
columns in results

windows, they can be
part of tables and

reports.
Here, a context variable

"gender" is compared
against two code sets
(postive and negative

reasons for using fiction in
science teaching) through a

count.
Use the "Other
Column" menu items
in Data comparison
tables to access
your context codes

A Data Comparison
Table

There are many reports that
allow you to access your
context variables and
compare them with the data
codes, sets or each other.

You've seen how to
assign a context
variable...

...but you still
need to know how
to tell TAMS
Analyzer which
codes are context
codes.

TAMS assumes your
codes are data
codes by default.

TAMS assumes all
your codes are data
codes. You have to
"Declare" which
ones are context
codes.

This declaration has
to happen before
tams runs into any
codes.

To assure that tams finds
your declaration first you
put them in a specially
designated file called
the init file

Step 1: Make a
new file in your
project.

Go to the files tab
of your project
window

Click the new
button

Pick RTF or Text as
the file type

Name it something like
"myproject init"

Part 2: Declaring
Context Codes

Making the init file...

STep 2: Tell
TAMS that the
new file is the
init file

Click on the name of
your new file in the

left hand list on
your files Tab

Then, click the
"init file"
button

If you did it
right, your
init file's
name will

appear here.

Now you can open this file and declare your context variables

Step 3: Add context
code declarations
to your init file

Simply list your context variable names
separated by commas, e.g. {!Context time,
date, location, informant}

for most projects this means
putting in the init file a !context
metatag

Open the init file by double
clicking its name in the
project's files tab.

That will declare these to be
context codes when searches
are executed.

Part 3: Controlling
context variables

By default your data is treated as
"unstructured". This means it is
treated as a long scroll.

For more on structured and
unstructured data, see tamszine #1

In unstructured projects
Context variables keep their
values until they are assigned
a new value

What happens at the end
of files is determined by
this program preference.
Either context variables
are set to blank, or hold
onto their value into the

next file.

EOF = End of file

You can override
this behavior by
setting the
"horizon" for the
context code. The horizon is the point in

your data when the
context variable is
blanked, i.e., turned to an
empty string.

That point can be an endsection metatag or
end metatag or the end of each file or the
end of all the files (never).

The tool for
setting the horizon
is the !var metatag

In the !var tag you indicate the name
of the context code for which you are
setting the horizon, and then the
horizon itself (separated by a comma).
It also declares the context code if
it has not already been declared.

The horizon can have
a value of
Endsection, end,
eof, or never

Notice that the
values are put in
quotes.

Here you can see a
context code named
"site" being set to a
value of "Belmont".
Again, site would still
need to be declared in
a !context statement in
the init file

All of this goes in your init file

A {!universal
VARname="Value"}
metatag
can be put at the top
of documents to set a
context code with a
horizon of EOF and set
its value at the same
time. The code still
has to be declared in
the init file

Sometimes a group
of values for
context variables
travel together.

For instance, if you are setting a
"speaker" context code to the
name of an interviewee, it would
be convenient if values of other
context codes such as Age, sex,
birthplace, and ethnicity could
automatically be set as well.

Adding an !if metatag to
your init file allows you

to indicate what the values
of these other context

codes should be

The "=>" symbol means "implies.

The first line of the last panel
reads if the context code named
site has a value of "NCSU" that
implies that the context code
named zone has a value of "East"

All context codes (e.g. site and
zone) must be declared before
being used in an !if statement

You can chain the implies like this:
{!if a="B"=>C="X"=>D="Y"}

Whenever Code A is set to a value of
B, C will be set to a vale of X and D
will be set to a value of y.

