
Qualitative Analysis for Beginners
(using TAMS Analyzer)

(cc) 2005, 2008, 2010 by Matthew Weinstein, some rights reserved
Icons (cc) 2010 Lukas Birn, some rights researved

Published by May Day Softworks
Tacoma, WA

This documentation is licensed under the Creative Commons Attribution-No
Derivative Works 3.0 Unported License. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Lukas Birn’s icons are licensed under the Creative Commons Attribution 3.0
Unported License.

Introduction

This document provides an overview and tutorials for starting to work with
qualitative data using TAMS Analyzer (TA).

The first chapter provides a birds eye view of TA and the way it fits into qualitative
research. It is a personal account of doing qualitative research and using TA to
track data and answer research questions. Other people may use the tools in TA
very differently, but this should provide at least one vision of how you might use
this digital tool with your project. To be clear the research I discuss, in the abstract,
assumes a single researcher. TA has multi-user capabilities. Using TA in a multi-
user environment is not simple and is discussed in a different document. The point
of part one is not to teach you “how” to do anything, merely to outline the ways
that TA is used to solve different problems at different stages in a research project.

The second chapter moves to specifics and talks about the way that coding works.
Coding is the process by which passages in documents are assigned meanings. It
also talks about initially setting up a project. Coding is very flexible in TA. A code
(i.e., a “word” indicating what a passage of a text means) can mark zero characters,
a few characters, or a whole document.

The third and final chapter of this primer covers analysis, the process of mining
a document that has been coded for information. Some of this information
may be quantitative (e.g., How many times did I use code X?) but most will be
qualitative (What are the examples of codes X, Y, and Z organized by gender of the
interviewee?).

These chapters are in no sense to be taken as a comprehensive description of TA or
its capabilities. When you have completed this introduction you can read through
the user guide and release notes for descriptions of the full extent of TA’s abilities.

Living the qualitative life in a digital age…
…with TAMS Analyzer

What does it look like to do qualitative research in a digital age? For many qualitative
researchers computers with their number crunching capacities seem anathema as research
tools for uncovering textual meanings, cultures as symbol systems, and practices as defined
in anthropology, ethnomethodology, cultural studies, and other fields engaged in qualitative
studies. Yet computers have been involved in analysis of language since the 1950s and the dawn
of artificial intelligence research. There are now numerous programs available for qualitative
researchers including NVivo, NUD*IST, MaxQDA, Atlas/ti, HyperResearch, Qualrus, Transana
and many others. I developed TAMS Analyzer (TA) because there were no packages oriented
towards textual analysis and qualitative research for Macintosh OS X when I desperately needed
one in 2002. I have continued to extend and develop the program over the years. Note that I
have not used any other qualitative packages, and, as a result, TA is a bit sui generis. However,
I did use computers for qualitative research while working on my dissertation in the early 1990s
(Weinstein, 1998) I used a programmable word processor called Nisus, an outliner called More
for analysis, and Panorama, a very flexible database good at manipulating large chunks of
text quickly. Mixing and matching programs was important for me then. In 2002, none of the
programs I had used had been updated for the new Macintosh operating system. TA was my
answer. In many ways TA’s design with open, in-text codes, reflects the heterogeneous way I
dealt with data early on. The codes are naked, ugly, visible for anyone to see, and any program to
use. It’s a virtue and a handicap.

Somewhere I read that unlike quantitative software every qualitative package is different. Skills
developed on one package don’t easily transfer to others. The language different software
programs use to describe their operations varies as well. Qualitative research is rather non-
paradigmatic in Kuhn’s sense of the word: we don’t share a common language/problem model/
solution model/world view. That said, when I met with the creator of MaxQDA recently, we
were able to compare features and assess our software’s various strengths and weaknesses almost
instantly. So what I discuss here will be different, at least slightly, from what someone would
learn with other software, but there are commonalities as well.

This first chapter introduces how TA works at the most conceptual level, i.e., how it links to the
qualitative research process. This chapter will not have any screen shots and few tricks. It is
about how to think about using qualitative research tools in the course of a research cycle.

To tell this story I have flattened out the research process. But I think this pattern and growth in
the research cycle will be recognizable to those that have done qualitative studies with TA and
probably similar packages.

I. Phase 1: In the field and on the computer

Most qualitative data sets are defined by 3 types of objects: interviews, observations, and
artifacts. While these can’t be considered comprehensive (consider surveys, for instance), these
forms of data still dominate those fields engaged in qualitative research projects. Obviously,
depending on the question being asked, the balance of these types of objects will vary. For the

4
studies I’ve recently become involved in, interviews have often provided the bulk of data, earlier
work was more observational.

Digitization starts in the field. Field notes are often typed straight into laptops these days. Digital
video is increasingly what is analyzed rather than the observation notes themselves. TA is a text
oriented package. This doesn’t mean that I can’t use other forms of data like digital audio and
video, but that they are not analyzed directly. Instead they are linked to a log or transcript using
time codes and it is the log/transcript that is coded and analyzed. TA is very smart about this and
can use the time codes to leap to the important spot in the video or the other direction (move the
scrub bar and leap to the nearest time code in the log).

For my projects I’ve been “taping” my interviews using an Olympus™ DM-10 digital recorder.
I’m a real convert to this equipment. The sound quality, if I use the highest setting, is crystal
clear. It’s also smaller and quieter (100% quiet) than the old recorders, even those little micro-
cassette ones. Once the interview is over I can connect the recorder to my computer (standard
USB cable) and drag the file to my Mac. Now this is a bit technical but I feel the need to
share: the only hitch with what I’ve said is that the DM-10 saves the files in WMA format
(Microsoft™) which is only readable by Microsoft programs. Luckily there is a tool called
MPlayer which is free and which if used with the right settings converts this to WAV that then
can be turned into an MP3 file using iTunes.1 Both of the last two formats are TA friendly, it’s
just that WAV files are huge, and I have no audio complaints about the MP3s which are 1/10 the
size.

Writing field notes can be done straight into TA. Document-artifacts need to be converted to
RTF format to be useful. Microsoft™ Word is the best way to do this, though other conversion
tools exist. As for multimedia files they need to be converted to some format that Quicktime™
supports (AIFF, WAV, MP3, etc.).

The first phase of my projects involve frequent scene shifts between “the field” and the computer.
At this point in the research cycle I’m using TA to transcribe interviews—TA has a little
transcription machine built into each document window—or to make logs of video. I’ve also
entered any codes, i.e., words or short phrases that name themes, up front. I’m also adding codes
as I see themes emerge while transcribing.

There is another type of decision I’m making as I enter codes at this point. This concerns the
types of independent variables that I will use later on in analysis. These include who is being
interviewed/observed, the times of particular observations or points in the interview (aka time
codes), SES/geography/gender/race or other sociological factors I’m interested in. Some of
these should be done as data is entered (the time codes for instance). It’s just easier that way,
and TA has some tools that automate the process. Others I can enter later, though if I know that
a particular type of data is going to be of interest, I can enter it as I go along. TA has ways of
saying ‘in this file the gender is “male”’ or ‘the city is “NY”’ etc, so I don’t have to mark every
instance of “coded data” with that information. I can also automate this information by telling
TA that if “Bob” is the speaker he is from NYC, is male, Latino, and bald. Any time something

1 I have been using the command line version of MPlayer which is available through the
Fink project. I type “mplayer -ao pcm myfile.wma” and a wav file is generated from the wma.

5
is identified as from “Bob” that other information will be entered automatically. The types of
information I am talking about here I call context codes, since they provide information about the
context for the data (they describe who the speaker is more than what s/he said).

This identifying of context and data codes continues until I have collected the body of interviews
and observations in my data set, or until the interviews and observations are not generating new
themes. Then it’s time to go deep.

II. Phase 2: Going deep

Phase 2 begins by reading and rereading my data and checking and applying the themes
throughout the database. In this package, and most others like it, codes/themes are attached to
portions of the transcript/log. This chunk of text is an example of this theme, etc. I am adding
themes, and every time I do, I need to return to every document to see where those themes apply.
While not as physically taxing as transcription, this is in some ways the most tedious work in a
qualitative study. The work ends when I’ve stopped adding themes.

I’ve found two tools in TA are absolutely essential in this part of the process. The first is the
definition button. When I tell TA about a new theme I also define it. Lists of these themes appear
in just about every window TA displays and researchers can always click a particular theme and
hit the definition button to see how the theme was defined.

This is usually not enough, however, as more code/themes are added. The definition button has
to be supplemented by searches for particular themes/codes. In other words I need to go back
and see each instance where I’ve used a code before so that I know what I meant by the code.
“Searches” return a window that lets me page through each instance of the code applied to
my interviews, fieldnotes, etc. Reading the passages I’ve coded a particular way allows me to
inductively recall the meaning of the code. For complex themes, more than the definition, this
gives me clues as to tone/topic/theme the code was intended to identify.

Once I have coded all of my documents and identified the major themes it’s time to deepen
those themes. Given a theme like “negative behavior” (TA actually doesn’t allow spaces in
code names, so it would probably be negativeBehvior or negative_behavior), I would want to
further classify each passage as to the type of negative behavior. This part of the process I call
reanalysis. Reanalysis involves looking at the instances of a particular code to alter my original
coding scheme. To do a reanalysis, I do a search for the code I am interested in breaking down
and then lock out most of my editing capabilities by throwing the software in “reanalysis mode.
This will keep me from doing damage to my source files that would throw them out of synch
with my search results. Next, I’ll sort through the results of that search and try to identify the
key types of “negativeBehavior”. If one type is name calling then I will “mark” the examples of
name calling and “recode” them as “negativeBehavior>nameCalling”. The “>” is TA’s way of
indicating that nameCalling is a subtype or subcode of negativeBehavior. I can add subcodes to
subcodes by just naming my codes with additional levels of the “>” sign. I would then continue
marking the next type of negative behavior (throwingSpitWads) and doing the same thing.
Eventually “negativeBehavior” turns into a whole family of types of “negativeBehavior” all
under a top level with that name.

6

Figure 1: A “graph” of the negativeBehavior family

The real challenge here is to try to categorize each instance that I come across of my top level
code of interest. Usually some are too vague to be classified and are thrown into miscellaneous
subcode (negativeBehavior>misc), but I want to limit the number of these, if possible.

For some projects this may be enough. I have now created a typology for the themes I’m
studying. By repeated reanalysis I can add layers of nuance to each code. I can also create very
sophisticated counts of these codes and subcodes for reports. The counts are designed to be
exported to Excel and to be analyzed using pivot tables and other advanced features.

However, for many projects, there is a need or desire to think big again, or to think outside of the
initial coding scheme, and that is where phase 3 begins.

III. Phase 3: From deep to broad

After breaking down codes into subcodes and subcodes of subcodes, I am ready for the next
analytic phase. By now I have moved from “raw” data to “cooked” data, data that signifies. The
third phase involves massive searching of the data and, using a unique feature of TA, searching
searches, winnowing down the results of searches until I find exactly the data I need and the
pattern of codes in my data that answers my research questions. TA provides for both search for
codes and search of data (i.e., string searches). It also supports a very powerful, standardized
formatting language called regular expressions (regex) for specifying complex lexical patterns.
Note that while TA provides tools to bookmark data, search for significant patterns of code and
text, and to combine searches in a variety of ways, e.g., to find the intersection of searches, the
real art of finding patterns within the data largely depends on the imagination.

Eventually, I may come to find that families of codes also have relations to other families of
codes, or codes to codes not in the same family. These non-familial groupings of themes are
called “code sets” in TA. Code sets are simply arbitrary groupings of codes, ones that are
genetically related and unrelated. Code sets can be named with full sentences; I don’t have the
“no spaces” restriction of code names.

In my research, I have often found that I use code sets to represent ideas that I want to test my
“well coded” data against. For example, in a recent study of pre-service teachers using science
fiction to teach science content, I started to identify which of the codes I created were related
to teaching science for citizenship (rather than as a way to make more scientists). These codes
were in various code families, but all related to issues like empowerment, equity, health and
environment. I created a set of those codes, and from that was able to determine that there was no

7
particular gender/sex bias to embracing those themes. I had not done gender analysis of this data
prior to this, but it took about a minute to tell TA what the sex/gender of each of my interviewees
was (this was done using an “if” command in TA: “if” the interview is with “Bob” sex is male,
“if” the interview is with Sally, sex is female). Then, having created the code set, I searched
for my coded passages (about 10 seconds), and then asked for a concept map (a “graph”) of the
relation of “sex” to “social issues”. I also looked at how social issues broke down by each of
my interviewees. The point is that I can ask questions about these large, ad hoc, cross familial
categories by getting either graphic representations or counts of codes or other variables (context
codes) I create against these code sets.

This has described a pretty typical research cycle using TA. There is one more part of this that
deserves a comment or two, and that is how do I get images out of TA that communicate what I
have discovered.

IV. From analysis to print

Having done the analysis, reanalysis, and code set analysis I will want to share my findings with
the “world” (i.e., the other 5 people as fascinated by my topic as myself). TA has a wide variety
of reports including code counts, cross counts of codes (how many code X and code Y apply
to the same data), counts or concept maps (graphs) of the relation ships among codes, context
codes, and code sets. Most of the table style graphics can be saved as a tab delimited text files,
perfect for Excel™ or Word ™, the code set report is generated as an html file which can be
copied and pasted right into Excel™ to generate sums, averages, etc. The concept-map style
graphs are generated through a program called Graphviz.app which can “export” graphs in many
graphic formats (tiff, jpg, etc.).

To be honest, most of the graphs generated by TA I use for analysis not for presentation. I do
count on TA to find the exact quotes I want to use in my papers, and TA allows me to copy the
quotes without all of the coding information, which my readers don’t necessarily want to see.
When I have needed a graphic (a pie chart of code counts, for instance), I’ve saved the counts to
a text file and used Excel™ to do the actual drawing rather than TA. Remember that one of the
inclinations behind TA’s design was to make sure its data was available for other programs to do
some of the heavy lifting.

8
V. Conclusion

My idea behind this short piece was been to show how a researcher might use software to make
sense of qualitative data in a digital age. For TA it means keeping track of lots of themes, and
sub-themes, and uber-themes, and cross themes. As with many digital issues, the payoff comes
with scale. If I’m analyzing one short interview, Post-Its™ are probably the way to go. If I’m
dealing with 3-100 interviews, Post-Its™ are out of the question, and it’s time to use TA or one
of its cousins.

Recap:
Phase What I’m doing TA Feature
1 Creating a project

Generating initial themes
Transcribing
Importing documents

New project
Define codes
New & import document
Transcriber
On-the-fly code creation

2 Coding
Recoding

Define codes
On-the-fly code creation
Search for codes
Selection of codes in
searches
Near selection in searches
String searches
Code definition
Add code
Recode

3 Code sets
Reporting

Code sets
Search for codes and code
sets
Graph reports
Code counts
Summary reports

Coding for Beginners with TAMS Analyzer

This is not comprehensive documentation of the TAMS Analyzer. It is more of
a tutorial, or actually the necessary nuts and bolts to get going on a qualitative
research project. From this documentation, users can read the documentation for
the program and the coding system.

I. What is coding?
Coding is simply a way of transforming raw information into data.
In qualitative research (i.e., research relying primarily on interviews,
observations, document collection) analysis proceeds by sifting through these
raw (or if transcribed, semi-raw/slightly baked) pieces of information and
deciding what each portion represents. In even modest size projects this can
produce what is known as a data burden, i.e., too much information to be
comfortably handled without some sort of mechanical system. Coding is one
way to handle this. Using computers, sticky-notes, or scribbles in margins (and
much more complex and Rube Goldberg-esque systems have been devised)
relevant passages are “coded,” i.e., labeled as to what that passage represents.
Single chunks of text should be able to receive multiple codes, and in most
modern coding systems they can receive various refinements to those codes,
i.e., they can be subcoded (this isn’t just an example of X--whatever that may
be--but a subtype of X called Y; in TAMS the code would be X>Y; the “>”
symbol is used to indicate various levels of sub-coding). An example would
help....

Consider a project involving studying the sounds that children think animals
make. We might begin to collect songs and rhymes that have animal sounds in
them as well as interviews about animal sounds. Of course, Old MacDonald
would be part of our data. Take just this verse:

Old Macdonald had a farm EIEIO
and on his farm he had a pig, EIEIO
with an oink oink here and an oink oink there
here an oink, there an oink, everywhere an oink, oink
Old Macdonald had a farm EIEIO

We would like to mark “oink, oink” as the sound a pig makes. Now we may
have a lot of codes and collect a lot of different information, including a
lot of peripheral information about what children think animals are, so we

10
need to design our code system carefully so we’ll be able to keep track of all
the information we’ll have coming in. For our study, whenever we have an
example of a sound we’ll mark it with the code “sound” and then a subcode for
the type of animal it is. So we would want to mark “oink, oink” with (and I’m
using TAMS syntax here; if you use a different system this would be different)
with “sound>pig”. If we get information about what children know about
pigs we will mark it “idea>pig”. How we do that will be described later, but
in theory (wihout TAMS) it could be done a lot of ways: sticky’s hanging off
the side with idea>pig on it, for instance. Computer coding usually involves
selecting the text and somehow picking the code from a list.

II. What is TAMS?
TAMS, which stands for text analysis markup system, is simply a way of
indicating in texts what the codes you’re using are. It looks a lot like html and
xml, which are languages used for making web pages, and I certainly was
influenced by those ways of marking up text. The idea was to make a system
that was easy to use; easy to see; and flexible enough that it could be done
with any number of tools. Before I wrote TAMS Analyzer, for instance, I used
a word processor for coding and a small program (still available at the TAMS
website) to pull out the information I needed; then I used programs like Excel
to do the actual analysis of that data.

To mark up text you surround the part of the text you are interested in by
“tags” which have in them a “code.” The tag with a code in it looks like this:
{mycode}. To indicate the end of the section of text you’re interested in you
put another tag with a “/” in front of the code name: {/mycode}. So in our
animal example we would “type” into the text “{sound>pig}” before the words
“oink, oink” and “{/sound>pig}” after those immortal words (oink, oink).
Now that text has been coded! It would look like “{sound>pig}oink, oink{/
sound>pig}” This means in TAMS that “oink, oink” is an example of sound
subtype pig. You could do it with any wordprocessor!

III. What is TAMS Analyzer (aka TA)?
TAMS Analyzer was my attempt, after using TAMS for a while, to create a
more complete application for coding, searching for codes, and recoding (going
back through and adding levels to the codes). TA is still not the whole megilla,
it doesn’t have graphing, for instance. For many projects you will still want
to save the results and use Excel, Neo(aka Open)Office or other programs
(Panorama is a wonderful database for this sort of analysis) to do the more
refined counting and graphing of results; but TA can take you at least 4/5 of the

11
way there! For most projects it will be all you need.

IV. Starting TA and understanding the parts
When you first run TA you will see the “New project” creator:

.
Figure 1. New Project Creator

Using this you pick the location and give the name to the new project. Do not
use any extension when entering the name. (1) For this tutorial call it “Songs”.
(2) Before you click create, determine where TA should save this information
by using the browse button to pick the folder where you want your project
saved. Finally, because this is a file we will work with throughout the tutorial,
let’s add the project to the work menu. (3) Click the “Add to work menu”
check, and (4) then click the create button.

You will notice that you have one very complicated window (See figure 2).
It is called the workbench (aka project window). Every research project you
have has to have one of these. It is what you have to open to do any further
work. Never open the data, result, or other files directly. Open your project
and use this window to open the data and results files in your project. The
file associated with this window (it has the extension xtprj which stands for
XML Tams Project) contains project wide information like the location of
your interview and other files as well as housing your codes (which will be
explained later) and their definitions. Note that the Project window will save
itself as changes are made!

12

A. The Workbench window
The workbench or project window ties your files together. The purpose
of the workbench is multiple. This is the window you use to define your
codes. It is where you create and add data files. It is also the window where
you put together multi-file searches. Finally, it is the window that allows
you to access your whole project .

The info tab is
used for setting
information for
multi-user
projects

The files tab is used
for adding files to
projects, opening
existing files, and
selecting files for
searches

The search tab is
used for mining
information you’ve
coded for searching
for information in
your data

Define codes
allows you to
create, define,
and set colors
for the codes in
your project

Code sets
provides a
means to group
codes together
into larger
themes

Figure 2. The Workbench

We will begin by clicking on the file tab so we can create a new document
in our project. The workbench will then look like this:

13

Figure 3. The Files Tab

B. Document Windows
To make a document window you need to click the new button on the files
tab of the project window. The new button is right over the “Files” list view
on the left side of the workbench window under the tab buttons:

Figure 4. The New Button On The Workbench Files Tab
Makes Blank Documents Windows

Click the new button, and you will be prompted for a name. Type
McDonald:

14

Figure 5. Naming Data Files

Once you click “Ok” you will see an almost blank document window.
Starting with TAMS Analyzer 3.0, the window actually starts with a
little bit of helpful text at the top of the window. Leave it there and
start your data below the text in braces.

The document window is a sort of specialized word processor (or text
editor) designed for coding data.

Here is my guided tour of the document window: In document windows
there is a toolbar running across the top which is where you can put text
and codes you use a lot. The document window toolbar also has a button
to move the workbench to the front and to save the current document.
Underneath this are two tabs, like those for a rolodex. One says edit, the
other says search. We’ll just work in Edit mode for now, which is the one
that the document window starts in. The other tab is for searching for data
in this particular file.

The Edit pane is divided into three parts. On the right side is a big pane
which is where you can enter your text. On the lower left side there are
buttons and fields for managing codes (well, there’s one button here which
toggles the ruler, but everything else is about codes on the left side of the
window.) On the top left side there are buttons for adding and controlling
video and audio files that are attached to this document (this might be the
transcript or log of an interview you have as an mp3 file, for instance).
These buttons (labeled +, <<, >, ^, and v) act as a built in transcription

15
machine. (See the Audio-Visual How To in the How Tos folder.)

Figure 6. The Document Window And Its Parts (Edit mode)

The “Apply code” button takes what you type into the code field (see
top arrow figure 7), checks to see if it’s a new code; if it is it asks for a
definition; in either case it applies the code to whatever text is selected in
your editor pane.

Figure 7. Adding A New Code Using The Button Panel

The buttons on the tool bar are worth a little explanation.

16
Code to toolbar: This button will take whatever code is selected in the
code list and make a toolbar button for it... Makes it easy to access
codes you use a lot.

Code def.: This button will pop up a definition of the code in a
window, to remind you what your codes meant when you first used
them

Workbench: This brings up your project window.

Once a new code is added it will appear in a list under the word Codes
(in the figure 6, no codes have been added to the project yet). As we will
discuss in the next section, the general way you code text is by selecting the
text you want in the right side of the window and double-clicking the code
you want from the list on the left side. But this will be handled in the next
section: my purpose here is just to point out the anatomy of this window.

C. Other windows
There are a couple of other important windows which I’m not going to talk
about yet... The most important of these are the windows that contain your
“results”, by which I mean the results of searches for relevant data. This
will be discussed in the third part of this tutorial: Analysis for Beginners
with TAMS Analyzer.

V. How do I code in TA?

A. Adding codes with the project window
We’ve seen one way to add new codes: select some text, fill in a code
into the code field, and then click the new button. Sometimes, however,
a researcher comes to a project with codes already in mind and needs to
enter them, even before adding a document or transcribing an interview.
One way to add such “a priori” codes is through the define codes tab on the
Workbench. To find this, move your workbench to the front and click on
the tab called “Define codes”. The workbench should now look as follows:

17

Figure 8. Creating New Codes

The name of our first code will be sound>goat. We’ll enter that next to
“Name.” In the big box underneath the name box enter the definition:
“Marks text showing what children think goat sounds should be”

Figure 9. Filling In New Codes

Let’s enter a second code. Click the “Save/Clear” button and add a code
“sound>dog” with the definition “Marks text showing what dogs sound like
to children”.

18

When you are done typing the definition, either click a different tab, or
press the “Save/Clear” button. The program will save the definition in the
project window,

B. Adding a new code from the document window
Let’s code “Old MacDonald’s farm,” or at least one verse so that we get the
idea. Make sure you have an open document window. If you don’t already
have a document window, click the “New” button on the files tab of
workbench.

Figure 10. The new button to make a new document
Fill in a name (e.g., McDonald) and press the Ok. This should provide a
nearly blank window. Under the !name tag type the following verse into the
window:

Verse 1:
Old Macdonald had a farm EIEIO
and on his farm he had a pig, EIEIO
with an oink oink here and an oink, oink there
here an oink, there an oink, everywhere an oink, oink
Old Macdonald had a farm EIEIO

This will go on the right hand side. Let’s now assign the code “sound>pig”
to the “oink, oink”. Select “oink, oink” and then on the left hand side type
in “sound>pig”:

19

Figure 11. Creating a new code

Then click the “Apply code” button. A dialogue will drop down asking for
the code’s definition.

Figure 12. Adding a Definition

Clicking the Ok button will have 3 effects:
1. This code and definition will be added to the code list in the workbench
2. The code list on the left of your document window now has a new code

20
in it (sound>pig) and
3. “oink, oink” has now been coded:

Figure 13. The Effects Of The New Button

C. Using existing codes
Once you’ve taught your project a new codes applying them is a breeze.
Simply select text and double click the code from the code list (that’s the
list of codes on the left side of each document window). We could just keep
selecting “oink”’s for instance and double click sound>pig from the left
side of the window.

With a second code “sound>cat” the document might look like this:

Old Macdonald had a farm EIEIO
and on his farm he had a pig, EIEIO
with an {sound>pig}oink, oink{/sound>pig} here and an {sound>pig}oink,
oink{/sound>pig} there
here an oink, there an oink, everywhere an {sound>pig}oink, oink{/
sound>pig}
Old Macdonald had a farm EIEIO

21

Old Macdonald had a farm EIEIO
and on his farm he had a cat, EIEIO
with a {sound>cat}meow, meow{/sound>cat} here and a meow, meow there
here a meow, there a meow, everywhere a {sound>cat}meow, meow{/
sound>cat}
Old Macdonald had a farm EIEIO

While this will be dealt with later: coded sections can be overlapped and
nested. Both “{a}{b}some text{/b}{/a}” and “{a}some{b}text{/a}{/b}”
just fine (notice how the first is an example of nested codes, the second is
overlapped).

In the following example I’ve also coded the whole verse as the place
that children think animal lives with a “setting” code, here subcoded to
setting>rural:

{setting>rural}Old Macdonald had a farm EIEIO
and on his farm he had a cat, EIEIO
with a {sound>cat}meow, meow{/sound>cat} here and a meow, meow there
here a meow, there a meow, everywhere a {sound>cat}meow, meow{/
sound>cat}
Old Macdonald had a farm EIEIO{/setting>rural}

Here, the sound code (sound>cat) is twice coded inside a stretch of
setting>rural.

D. Recalling the definition of a code
When you have a lot of codes and sub-codes (pig is a subcode of sound in
our example) it is often hard to remember the definition you gave a code.
No problem. Click one time on the code you’re curious about from the
code list and click the “Code def.” button on the document’s tool bar. There
are also “def” buttons in various workbench windows that list codes. Your
definition will pop up:

22

Figure 13. Code definition

E. Working with codes
As has been noted codes can be overlapped and nested. Furthermore,
related codes can be nested and overlapped. There are no problems for
instance with

{a}This is my {a>b} text {/a>b}{/a}

even though a>b is a subtype of a. That’s fine. From TAMS point of view
they are as different as pickles and tomatoes. That doesn’t mean that codes
can’t cause trouble; they certainly can. See the section on “Problems with
codes.”

There are several tools that make working with codes easy. These are on
the Coding menu. For example, while coding I find that I want to relocate
the beginning or end tag. I’ll read the next paragraph and realize that
should be included in the coded passage. Start by selecting the tag. One
way to do that is to click in the middle of the tag and pick “Find current
code” from the menu. That will select the whole tag. Now you can use the
mouse to drag and drop the end tag to a new location.

You may see one end of a coded passage and want to find the other end. In
other words you want to find the other end of the code pair. By a code pair I
mean the front code (that is the one that looks like {a}) and the back or end
code (the one with the slash: {/a}). Just click in the middle of one end and

23
pick “Find paired code” from the Coding menu; the other tag will then be
selected and scrolled to.

Sometimes you may want to just move through the document code by code.
This is easily done with repeated use of “Find current code” and “Find
next code” Picking “Find next code” repeatedly will move you through the
document.

Deleting code pairs is also something that TA makes easy. If you have just
inserted the code by double clicking or using new, you can pick undo from
the edit menu. Alternatively you can click on one of the tags (i.e., anywhere
inside the braces) and pick “Delete code pair” from the Coding menu. (For
new codes, this will not do anything to the code list, only to the document
you’re working on).

Finally, all of the codes in a selection of text can be removed by (1)
selecting the portion of text you want stripped and (2) picking “Remove
codes from selection”.

F. Problems coding
There are a number of problems with coding that can crop up; and TA
provides two tools to help you catch these problems.

1. Broken up codes: sometimes the mouse slips and tags can end up in
tags: {setting>ru{sound>cat}ral}. Here {sound>cat} has accidentally been
inserted inside of {setting>rural}. This will not make any sense to TA. If
you pick “Check for pairs” this will select problem tags, basically tags that
don’t seem to have an end or beginning. The one it shows you probably
is not the problem tag, but it will be near the problem tag. It is a clue as
to where the problem is. The program is telling you that TA can’t find the
other end.

2. Incomplete codes: Sometimes while working with a document, a tag
at one end or the other will get deleted. The solution is the same as for
problem #1. Choose “Check for pairs” off of the Coding menu. A tag
will be selected if there are problems (i.e., if there are not an even # of
beginning and ending tags). This is a clue to the problem; for some reason,
TA did not find a match for this.

24
3. Nested codes: Sometimes the same codes can end up inside each other.
This might be represented by the following situation:

 {a}Some text{a} that I’m {/a} trying to code {/a}.

This is not the sort of nested code that works with TA. It would be fine if
the inner code was any code including a subcode of a; if it were a>b, for
instance. The problem is that TA can’t figure out where the passage ends,
and it will choose the shortest passage. The phrase “trying to code” is not
seen by TA as having been coded. These problems can be found by picking
“Check for nested” from the Coding menu.

The moral of the story is clear, run “Check for pairs” and “Check for
nested” often.

G. Saving
TA does not automatically save document windows. Save often. Remember:
result and document windows you must save on your own. The project window
takes care of itself

VI. Concluding comments

This is only the “A’s” of the ABC’s of coding. Once codes are added as
described, you will find them available to every file in your project.

TAMS provides all sorts of additional tools for working with codes. There
are also different types of codes, to start with. There are codes that describe
entire documents (this file is an interview), there are codes that describe
a section of a file (this is bob talking), and the codes we’ve been working
with, which are called data codes, and which identify themes. See the users
guide.

Some of the things that you might pursue through the users guide,
exploring the program preferences, and continuing to work with your data
are:

1. How to assign colors to different codes
2. How to group codes together into code sets

25
3. How add comments to a particular coded passage
4. How to use results windows to add layers of codes to already coded

passages.
VII. Addenda: Coding PDF and pictures with TAMS Analyzer 4.0

TAMS Analyzer 4 adds support for coding PDFs and images. The process
is very much the same one you saw above. You select the part of the image/
document you want to assign a code to; you fill in the name of a code; you
click “Apply code” or double-click the code name from the list. With PDFs
there are two different ways of selecting portions of a document. You can
use a rectangle tool to pick different areas of an image or page, or a text
tool to select text (if your specific PDF document has selectable text; many
do not).

One difference between the above example and these other file types is that
initially setting up your PDF and image files involves an additional step:
step 1 involves creating a “wrapper” file and step 2 involves attaching the
PDF or image to this wrapper. To create a “wrapper” file (which TAMS
will use to hold your coding information) you follow the process shown
in figures 4 and 5 above. You pick “new” above the file list on the file tab
(figure 4). When prompted for a name, pick “pdf” or “image” from the pop-
up menu (see figure 5).

What you see is the pdf/image wrapper. It is a file of type tamspdf or
tamsgaphic (see figure 14 for an example of a pdf wapper window). Before
you can start coding you have to attach your PDF to this wrapper. Just click
the “+” button and select the file you want to code. This is a a one time
process. This will copy the file into your project folder and connect the file
to the wrapper. Once loaded, save your wrapper file. Now you can start
selecting and coding. Each coded passage will be represented in the table
below the pdf/image.

26

Figure 14. The PDF Window Wrapper

Analysis for Beginners with TAMS Analzyer

I. What you need to use this documentation

At this point you should have read the document called Coding for Beginners. If you have,
hopefully you know the difference between workbench windows and document windows,
you know that I use project windows and workbench windows interchangeably, and you can
now create documents, enter data, create data codes, and apply those codes to sections of
your document.

We’ll be using a modified version of the Old McD. from Coding for Beginners for this
analysis (which is merely to introduce you to the basic procedures for analysis):

{!context verse}

{verse}1{/verse}
{setting>rural}Old Macdonald had a farm EIEIO
and on his farm he had a pig, EIEIO
with an {sound>pig}oink, oink{/sound>pig} here and an
{sound>pig}oink, oink{/sound>pig} there
here an oink, there an oink, everywhere an {sound>pig}oink,
oink{/sound>pig}
Old Macdonald had a farm EIEIO{/setting>rural}

{verse}2{/verse}
{setting>rural}Old Macdonald had a farm EIEIO
and on his farm he had a cat, EIEIO
with a {sound>cat}meow, meow{/sound>cat} here and a meow,
meow there
here a meow, there a meow, everywhere a {sound>cat}meow,
meow{/sound>cat}
Old Macdonald had a farm EIEIO{/setting>rural}

This version of our old data introduces some very “not for beginners” ideas. The first of
which is the metatag. A metatag is an instruction to the tams program. It’s the way the
researcher specifies how TAMS should treat the data. Metatags are always surrounded
by braces “{“ and “}”, just like codes, but begin with an exclamation mark (!). Our new
document begins with a critical metatag: context.

II. Context metatag
The context metatag tells TA that the following list of codes are different than normal
data codes. These codes are used to indicate information that gives context to the data
codes rather than the data codes themselves. In interviews the speaker’s name might be
a good context code. In field notes the time index, or location, or observer might all be
context codes. We are telling TA that when it returns information about our data we want

28
it to include this other information (who is speaking, the time code for field notes, or
in this example the verse #) with the relevant data. This ability to attach information to
each other is one of the real strengths of TA, but you can see that it is not exactly coding
for beginners. Note that the context values have to precede the data that they are coding
(actually if you read the user guide you can structure a document so that you can assign the
context codes at different points—but for unstructured documents what I have said is true:
the context values need to be set before the data codes.) Also, all of your context variables
need to be “declared” in the first document that TA searches through. It’s often helpful to
have a document designated for holding these “up front” metatags. In TA this is called the
init (as in initial) document.. Note: For people who have read earlier versions of this
documentation, !context is synonymous for the older code !repeat.

Examples:

1.

{!context speaker}

{speaker}bob{/speaker}: {identity}this is me{/identity}
{speaker}mary{/speaker}: {identity>negation}no it’s not{/
identity>negation}

2.
{!context speaker, time}

{time}110{/time}
{speaker}bob{/speaker}: {identity}this is me{/identity}
{speaker}mary{/speaker}: {identity>negation}no it’s not{/
identity>negation}

{time}225{/time}
{speaker}bob{/speaker}: {identity}I can prove it{/identity}
{speaker}mary{/speaker}: ok do so

III. What is analysis?
Analysis is a process of finding out what information is present in your data and what that
information means. Practically, it is the process of taking codes and finding out what pattern
they form and testing meanings for that pattern (through searching for negative instances,
for instance). To find these patterns in TA you ask the program to turn your interviews into
tables that you can use to count instances of particular codes (or collections of codes) etc. In
essence, what TA is all about is taking those codes and turning your interviews, field notes,
etc., into a database (or spread sheet) that you can browse, sort or further search in a variety
of ways. It is this culling through the data which is the heart of analysis.

29
IV. Searching, sorting and selecting: the grand plan

At the beginning of your analysis, after you have coded your documents, there are three
essential operations you need to master: searching, selecting and sorting. That is what
this tutorial will concentrate on. When you have a comfort with these three operations you
should go on to explore data sets, autosets, and set operations. But those topics are not for
beginners.

A. Searching
Searching is the procedure by which you take your coded data and turn it into a nice table-
like database/spreadsheet. In this tutorial we will use the workbench for searching; though
each document window has an individual search tab that you can use to find information
just in just that document. The steps for searching for information are easy enough: specify
a search list (which documents should the program look through?), specify search criteria
(do you want to find just one code or a series of codes, or all your coded passages?) and
press the search button. This will give you a “results window,” i.e., a database/table of the
passages that meet the criteria you established.

1. Creating a search list
First we have to indicate what documents our program should search through. Often we
have lots of documents in a project that may represent searchable aspects of our work as
well as other items that we do not want to search. To create a search list we use the “Files
Tab” which contains a list of files in our project, and use the buttons in the center of the
workbench to move items from the file list (the list of the documents in our project) to the
search list (those that TAMS should search). If you want all of your documents brought
over use the >> button. If you want to empty the search list of all documents use the <<
button. Otherwise click on one file in the file list (that ‘s the left hand list at the bottom)
and click on > to add it to the search list. If you want to remove a file click on it in the
search list and click the < button.

You can also change the order of files to be searched by using the ^ and v buttons on the
left hand side of the screen.

30
File list Search list

Buttons for adding and removing
files from the search list

Buttons
for changing
the order of files
in the search list

Figure 1: Assembling A Search List On The Workbench in the Files Tab

For our project, we will have one file in the file list. We need to add that file, let’s say
it’s called “oldMacD.rtf,” to the search list. Click on file name on the left side of the
project window and press the button labeled “Add >” to append it to the list of files to be
searched. You should see the name appear on the right side.

2. Executing a search
We have our search list now we need to tell tams what to search for. This we do through
the “Search” tab of the workbench window. Our first search will be what is called an
“unlimited” search, meaning we’re not putting any limits on what data is returned: we
want it all. This will demonstrate how TAMS turns raw stuff (interviews) into tables. To
do an unlimited search make sure that the field marked “Search” is empty, that the pop-up
menu underneath the check boxes says “Simple” and leave the “raw” box checked and
the other two unchecked and press the button marked Search.

31

Figure 2. TAMS Prompting for a Result File Name

TAMS will now prompt you for a name for your search. Just leave the field blank, don’t
touch the “Temporary” check box, and hit the “Ok” button. This will automatically create
a temporary result file, i.e., the next time you run TAMS it will throw out these results.
This is typically what you want. Most results are exploratory and are not intended for
permanent storage. If later you do want to save these results permanently you can use the
File->Save as… option to give the file a real name and making sure that “Temporary”
is not checked. On the other hand, if you know you want to keep this file for further
analysis, fill in a name and make sure that temporary switch is unchecked. This is a
typical results window:

32

Figure 3. A Results Window

What you get is a results window: This is the window that lets YOU analyze your data.
There are a lot of parts of a result window, so briefly:

1. There is a panel of buttons on top that you can configure and by default includes
buttons for taking you back to your project window (Workbench), back to your
document windows (find record), and for refreshing this window if one of your
documents changes among other functions

2. Then is a status panel which gives you information about your results. It tells you
how many records are showing, a check box which tells you whether any of your
documents have changed (which means you should hit the refresh button) and a
description of the data you’re seeing. In this case it tells us that we have done an
unlimited search. At the far right side is a little button that is used for doing “Select
near” analysis: i.e., give me all examples of people talking about pigs near (within 5

33
lines or any definition of near you develop) people talking about goats.

3. Below the status panel is a large pane that shows us the data of the selected record.
To select a different record, click on a different row of the table below. This is the
browser pane.

4. Finally, occupying the whole bottom of the window, there is the table of records: one
row represents one passage of text that met the criteria we asked for.

A simple, unlimited search returns a row for every coded passage in our data. If a section
of text has two codes: “{code1}{code2}This is my text{/code2}{/code1}”, for instance,
that text will appear in two different rows in the table of records, one for code1 and one
for code2 (yes, this might mean that there is redundancy. A non-simple search removes
the redundancy and returns one row for every stretch of text surrounded by codes (no
how many codes are embedded in that text. There is a price for this; you actually lose
information searching that way).

By clicking on one of the rows you can use your up and down arrow to browse through
your data, examining the passages in the browser pane. If you want to look at one row of
the data in its original context double-click the row.

Finally, it is worth examining the columns given to you in the table of records. The
first column is a simple numbering of the shown records. Next will appear all of your
variables (repeats, context, universal, etc.). Here we can see which verse each coded
passage came from. If we had an interview we could see who was speaking.

Next comes the code of the passage put into a column TA creates called _code (all of
the columns TA creates start with an underscore), followed by the data (called _data),
followed by comments we’ve attached to the codes (another non-beginner function), the
name of the coder if you are using multiple coders, the name of the document (in doc),
followed by the number of characters into the document that the passage started, the
length and location of the passage if there were no tags in the document (_bare_??) and
finally the initials of the person who has checked out this document, which only applies
to multi-researcher projects (_holder). Again, the columns that TA creates always start
with the “_” (underscore) character.

Sorting is very easy at this point! We can sort the data just by clicking on a header of
the column we want to sort and pressing the sort button. This is not the best way to sort
information though, a subject we will address in a later in this tutorial.

3. Searching for specifics

There is a lot that can be done in unlimited searches, and more often than not that’s what
I use to explore my data. Often however, the researcher wants to see only a single code
or a few codes. While that is possible to do in an unlimited search (see the section on

34
“selecting data”) it’s easier just to search specifically for the codes of interest.

The easiest way to search for a specific code is to go to the search tab and simply double-
click the code from the list of codes on the bottom left of the workbench. So if we want to
see all of the sections of text coded as sound>pig we could double click sound>pig from
the list and hit the search button. Then only the sound pig records would appear in the
results window. To clear the search field to clear it of “sound>pig” so you could search
for a different code, click the button called “Clear” on the work bench.

Figure 4. Searching for a Single Code

You could have also just typed the name of the code into the box labeled “Search:”

What If you were looking for either sound>cat or sound>pig? Simple:
1. Make sure that the Search: box is empty by pressing the “Clear” button.
2. Double click sound>cat off of the list
3. Type in a comma and a space after sound>cat in the Search: field box.
4. Double click sound>pig.
5. Press the search button

Alternatively you could have typed in “sound>cat, sound>pig” directly into the search
box with the keyboard, and then pressed the search button. You could keep adding
commas and different codes. If you wanted to search for three codes you could type
“sound>cat, sound>pig, setting>rural”, for instance.

35

The codes sound>pig and sound>cat are part of a family of codes called sound. If we
just look for sound we will get everything that is in the sound family including anything
labeled sound, sound>pig, sound>cat, sound>cat>persian, etc. If I only want to look for
those things that are sound and not a subcode of sound, e.g., sound>cat, I have to click
the “Exact” box under the search. Otherwise TA assumes I want the whole family.

Finally, and this is almost a beyond beginner item. If I want passages that have two
codes, i.e., the intersection of coded passages, I would need to use a plus sign between
the codes. In other words if I want to see the part of my document that is sound>pig and
setting>rural at the same time I would type “sound>pig +setting>rural” into the search
field.

If you feel comfortable with all of this you can learn a few other tricks to searching by
clicking the search tab on a document window and looking at the Help box.

B. Sorting
Finding information is the first part of analysis. We’re half done with the topic of finding
information, but before continuing I want to offer as an interlude some notes on arranging
information. This is the art of sorting, and TA can do very complex sorts. While beyond
this tutorial, TA can also remember sort orders and use them in macros that are very
powerful for finding key information across searches.

I’ve already noted that a simple way to sort is to click on a column in a results window and
hit the sort button. The problem with this method of sorting is you have no control over
the type of sorting that the program is doing. The more powerful sorting tools are under
the “Results->Sort up” and “Results->Sort down” menus. These allow you to control the
direction of the sort (Should A or Z be first? If A is first you are sorting up; if Z is first you
are sorting down) and allow you to nest sorts, e.g., first sort A-Z on one column and then
sort A-Z on a different column. That way you can sort by file name and then sort by the
codes; the result will be all of the codes sorted by file name!

Alternatively, you may put three or four documents in your search list and then want to see
how many documents use each code. So you want to sort by the codes and then sort within
each code by document. Specifically you would click on the column with the header _code
and then pick “Results->Sort Up->alpha” (i.e., alphabetically) Then you would click on the
header of the column labeled _doc and pick “Results->Sort up->alpha within” The word
within means keep the first column sorted appropriately, but rearrange items that match in
the first column according to the currently selected column.” You could sort by any number
of columns within each other. If you want to start over, just sort NOT within the others.
Just pick “Results->Sort up->alpha” or whatever data format is appropriate.

36

Figure 5. Column _code is Now Selected for Searching or Selecting

TAMS can sort alphabetically, numerically either by integer or real (floating point)
comparison, by date (though you must pick the format first by picking it from the Results-
>Sort options…->Date format menu item first—it’s best if there’s only one date format in
a project), and by code. This latter type of sort is really not part of a beginners tutorial, but
just so that you know, if I set the code level to 1 (by picking the “Results->Sort options-
>Code level” dialogue) sound>cat and sound>dog will be taken to be identical for the
purposes of sorting since they match at the FIRST (this is the meaning of code level 1)
level of codes. Picking code level 2 means both level 1 and 2 must match. Ok, that’s an
advanced topic.

Now you can organize your data as well as find it!

C. Selecting
The third type of operation you need to know about is selecting. Selecting can be thought
of as finding information inside of a search. It’s a way of searching searches; or better
stated searching results files. Remember that a results window is a fairly complete
database, and a good database should be searchable. The terminology is confusing because
selecting also refers to the way that we pick things on the screen with our mouse: select
column _code, select the first field, etc. I’ll try to use “pick” instead of select for the latter
type of operation.

Let’s take as an example trying to find the number of sound>cat codes there are out of
the total number of coded passages. To start with, do an unlimited search: Go to your
workbench and press the clear button and then the search button. Don’t fill in a name, just
click OK. You should now have a result window with one line for every coded passage in

37
the document: i.e., one line per code.

We can see that we coded 7 passages not counting our repeat codes by looking right under
the buttons on the results window:

Figure 6. We found 7 coded passages (and all 7 are showing)

Let’s find the sound>cat codes. Pick the _code column by clicking on its header. Picking
the column of interest is always step one of a selection. Then pick the Results->Select…
menu option:

Figure 7. Picking Select…

This provides a dialogue box into which you can type the phrase you are looking for:
sound>cat.

38

Figure 8. Selecting “sound>cat”

After clicking OK only those records that have sound>cat will be showing!

Figure 9. After selecting “sound>cat”

Now only two records are showing. And the count indicator under the buttons shows us
that 2 out of 7 total records are sound>cat.

39

Figure 10. The results of selecting “sound>cat”

To see all of the records again pick “Results->Select all”

That’s the heart of selecting. We could modify this in a whole variety of ways mostly
shown in the menu displayed in Fig. 6. We could switch the records that are showing and
the ones not showing (so only records that were not sound>cat were visible), by picking
“Results->select reverse”; or we could select additional records from the total pool of
found records by picking a column and picking “Results->Select additional.” We could
keep whittling down the records showing by picking more columns and picking “Results-
>Select…” again. Finally we could whittle down our findings by picking a column and
picking “Results->Remove from selection…” By combining these and using different
columns: your _code column, your repeat columns, and your _data column you can find
many patterns inside your data.

V. A more complicated example… Less for beginners

Before concluding this tutorial I want to work through a more advanced example of
selecting. This is an alternative way of finding the intersection of coded passages by using
Result->Select… It also shows some of the issues that can result from such searches. For
this example I’m going to use this small passage:

R: Well, my high school was known as a trouble school.
There were a lot of fights, and kids, uhm wandering around,
and most of us worked in factories on the [city’s] east
side. Most of us partied rather than worked.

We’ll code this as follows:

R: {school>trouble}Well, my high school was known as a
trouble school. {aspirations}We weren’t going anywhere. {/
aspirations}{violence}There were a lot of fights{/violence},
and {truancy}kids, uhm wandering around{/truancy}, and
{aspirations}most of us worked in factories on the [city’s]
east side{/aspirations}. {gratification>delayed}Most of
us partied rather than worked.{/gratification>delayed}{/
school>trouble}

Now let’s imagine that we are searching for the intersection of discourses we’ve labeled
“school>trouble” and “aspirations.” Maybe we want to see how high school image and
occupational aspirations correlate. One way to find these intersections is through searching

40
for “school>trouble+aspirations.” You can also find this from an unlimited, simple search,
however. Reasons for doing so include the ability to do “set mathematics” i.e., the ability to
look at how groups of coded passages intersect with each other. To do this we’re going to
work from an unlimited, simple search; that means we hit the search button with no criteria
filled in.

Figure 11. Picking _code

Once we have done a search we are going to look for records that have both. As a first cut,
let’s work with just those records that have “school>trouble” Select the _code column by
clicking it’s header, and pick Results->Select… Fill in “school>trouble” and hit “ok.”

Figure 12. Selecting _code

41
Now we need to find the records that are left that have “aspirations” (in our example there is
only one record to search, but that just points to the artifice of the example). Pick the _data
column this time. Then pick Results->Select and enter “{aspirations”. As the search string:
voila: what you see are records that have both codes.

WARNING: In our example we would get a different number of records if we first searched
for “aspirations” in the _code column and then “{school>trouble” in the _data column. We
would eventually see the same text as we browsed through the records, but you should know
that the number of records would be different. Finding how many passages coded with A
have code B turns out not to be the same question as how many passages coded with B also
have code A. Why? The first time we would get the passage marked as orange as the result
of the first and second search:

R: {school>trouble}Well, my highschool was known as
a trouble school. {aspirations}We weren’t going
anywhere. {/aspirations}{violence}There were a lot of
fights{/violence}, and {truancy}kids, uhm wandering
around{/truancy}, and {aspirations}most of us worked
in factories on the [city’s] east side{/aspirations}.
{gratification>delayed}Most of us partied rather than
worked.{/gratification>delayed}{/school>trouble}

The second time we would get the following two orange passages returned separately.

R: {school>trouble}Well, my highschool was known as
a trouble school. {aspirations}We weren’t going
anywhere. {/aspirations}{violence}There were a lot of
fights{/violence}, and {truancy}kids, uhm wandering
around{/truancy}, and {aspirations}most of us worked
in factories on the [city’s] east side{/aspirations}.
{gratification>delayed}Most of us partied rather than
worked.{/gratification>delayed}{/school>trouble}

If you want a count of intersections of the two codes rather than a count of how many of
coded passage X also has some of Y, you should do a search from the workbench with the +
sign: aspirations+school>trouble.

VI. Concluding remarks

At this point you have some idea of how to search, sort, and select. You should also be able
to designate some codes as context codes to identify contextual information. From here
some simple additional things to learn include personalizing the toolbar on results windows,
adding and viewing comments in results windows, and exporting data to the clipboard so
that it can printed in Microsoft Word, Apple Pages, or the word processor of your choice. An

42
even more advanced step would include learning about “reanalysis,” i.e., transforming your
data files based on your results files. This includes recoding your files (actually changing the
code of a given passage) and adding codes around given passages. Finally, there is a lot to
be explored in terms of reporting, including simple reports (counts of codes) and complex
reports (data summaries and dot graphs).These are all described in the user guide. Have fun
exploring this complex but powerful software program.

	Introduction
	Living the qualitative life in a digital age
	Coding for Beginners
	Analysis for Beginners

